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Resonant growth of three-dimensional disturbances in plane 
Poiseuille flow 
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A linear mechanism for growth of three-dimensional perturbations on plane Poiseuille 
flow is investigated. The mechanism, resonant forcing of vertical vorticity waves by 
Tollmien-Schlichting waves, leads to an algebraic growth for small times. Eventually, 
viscous damping becomes dominant and the disturbance decays. The resonance occurs 
only at  discrete points in the wave-number space. Nine resonances have been investi- 
gated. For these, the phase velocities range from 0.67 to 0.81 of the centre-line velocity. 
The lowest Reynolds number for which the resonance can occur is 25. The strongest 
resonance appears only above a Reynolds number of 341. Also, two cases of degeneracy 
in the Orr-Sommerfeld dispersion relationship have been found. 

1. Introduction 
The linear stability properties of viscous parallel shear flows have generally been 

analysed in terms of the growth rates for wave-like disturbances. These growth rates 
are determined from the Orr-Sommerfeld equation. Motivated by Squire’s theorem, 
only waves travelling in the direction of the mean stream are generally considered. 
For plane Poiseuille flow, calculations have yielded a critical Reynolds number, based 
on the centre-line velocity and the channel half width, for linear stability of about 
5770 (Orszag 1971; Lankin, Ng & Reid 1978). 

Transition to turbulence in plane Poiseuille flow has been investigated experimen- 
tally by Davies & White (1928), Narayanan & Narayana (1967), Pate1 & Head (1969), 
Karnitz, Potter & Smith (1974) and Nishioka, Iida & Ichikawa (1975). Their results 
are summarized in table 1.  The experimental results clearly indicate that the transition 
Reynolds number depends strongly on the initial disturbance level. Nishioka et al. 
(1975) found that smail disturbances behave as predicted by linear stability theory, 
that subcritical instability occurs when the disturbance level is above a certain 
threshold value, and that the flow can be maintained laminar up to a Reynolds number 
of 8000 by reducing the background turbulence level to 0.05 %. 

The existence of a nonlinear subcritical instability mechanism for plane Poiseuille 
flow has been demonstrated through calculations incorporating weak nonlinear effects 
by, among others, Stewartson & Stuart (1971) and Itoh (1974, 1977, 1980). For a 
discussion of earlier nonlinear stability theories, the reader is referred to the review 
articles by Stuart (1971) and Stewartson (1975). Numerical experiments by Orszag 
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Source Rtm, 
Davies & White (1928) 1080 
Karnitz, Potter & Smith (1974) 5025 
Narayanan & Narayana (1 967) 1425 
Nishioka, Iida & Ichikawa (1975) 8000 
Pate1 & Head (1969) 1035 

TABLE 1 .  Transition Reynolds numbers for plane Poiseuille flow in various experiments. 
The Reynolds number is based on maximum velocity and half-width of channel. 

& Kells (1980) and Patera & Orszag (1 980) have confirmed the existence of the sub- 
critical instability. Their direct numerical integrations of the Navier-Stokes equation 
suggest that finite-amplitude two-dimensional disturbances are unstable for Reynolds 
numbers larger than about 2800. Furthermore, finite amplitude two-dimensional 
neutrally stable states seemed to be explosively unstable to three-dimensional per- 
turbations for subcritical Reynolds larger than about 1000. 

The possibility of a linear resonance mechanism between the vertical vorticity 
eigenmodes and the Tollmien-Schlichting waves has recently been pointed out and 
explored for plane Couette flow by Gustavsson & Hultgren (1980). The direct resonance 
mechanism leads to linear growth for small times and can lead to large amplitudes 
before viscous damping becomes dominant. It is the purpose of the present paper to 
investigate this mechanism for the case of plane Poiseuille flow. As will be shown, 
there is a distinct difference in the occurrence of the resonances as compared to the 
case of plane Couette flow. Here, the resonances occur only for certain discrete values 
of the parameters k and aR, where k is the modulus of the wavenumber vector and 
aR is the product of the streamwise wavenumber and the Reynolds number. This 
indicates that, for a fixed Reynolds number, the direct resonance mechanism is very 
selective with respect to the spanwise scale. 

2. Formulation 
The co-ordinate system used is a Cartesian system (x, y, 2). The x, y and x axes are 

in the streamwise, the vertical and the spanwise directions, respectively. The solid 
boundaries are located a t  y = & 1, and the dimensionless steady mean flow is given by 

U(y) = 1 - y2. (1) 

The development of small three-dimensional disturbances on the mean flow is governed 
by the following differential equations (Gustavsson & Hultgren 1980) : 

where v and wy are the vertical velocity and vertical vorticity, respectively, of the 
perturbation flow field. R = U,h/v is the Reynolds number, where U, is the centre- 
line velocity, h is the channel half width and u is the kinematic viscosity. The prime 
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denotes differentiation with respect to y and V2 is the Laplacian. The boundary con- 
ditions are 

o,=O a t  y = f l .  ( 4 b )  

Equation (2) subject to the boundary conditions ( 4 a )  has wave-like solutions, the 
Tollmien-Schlichting modes. For two-dimensional perturbations, equation ( 2 )  gives 
a full description of the dynamics. For three-dimensional disturbances, in addition, 
the forced problem (3) must be solved. The homogeneous operator in (3) subject to 
( 4 b )  also has wave-like solutions. Thus, a resonant response can occur if a Tollmien- 
Schlichting wave has the same wavenumber vector and eigenfrequency as a vertical 
vorticity mode. The formal solution of the initial-value problem, obtained by standard 
transform methods, is presented in Gustavsson & Hultgren (1980).  The analysis in 
this paper follows their notation closely. For more details of the derivations, the reader 
is referred to that paper. Their solution shows that the resonant part of the trans- 
formed vertical vorticity, $r, is given by 

where ,8 is the spanwise wavenumber. x1 and x2 are homogeneous solutions to the 
transformed vertical vorticity equation. $ is the transform solution for the vertical 
velocity component and it is obtained by solving an inhomogeneous Orr-Sommerfeld 
equation. This latter solution has poles in the Laplace transform plane corresponding 
to the eigenvalues of the Orr-Sommerfeld equation. E = 0 is the eigenvalue relation 
for the vertical vorticity modes. Resonant forcing occurs if an Orr-Sommerfeld pole 
coincides with a pole given by E = 0. This double pole leads to a temporal behaviour 
of the form tesot, where so is the pole. 

The presence of the resonance phenomenon is thus investigated by studying the 
following eigenvalue problems: 

(Gal 

( 6 b )  

( 7 a )  

( 7 b )  

$“ - [ k 2  + iaR( U - cl)] $ = 0, 

$( k 1) = 0, 
and 

- 2k2#” + k4$ - id?[( U - c2) (9” - k2$) - U”$] = 0, 

$( f 1 )  = $ I (  f 1) = 0. 

Here, a is the streamwise wave number and k = (a2+p2)&. The eigenvalue problem 
(6) only has exponentially damped solutions (Davey & Reid 1977). Therefore, the 
resonant response will eventually decay. The maximum amplitude is attained a t  a 
time of the order Ia~~1-l and is proportional to lacI1-l, where cI is the imaginary part 
of the eigenvalue. 

I n  the next section, the results of the numerical investigation are presented. Because 
the eigenvalues c1 and c2 depend on two parameters, k and aR, it was judged necessary 
to somewhat limit the study. Only temporal eigenvalues, i.e. a and k are both real, 
were therefore considered. The spatial problem is an interesting extension of the 
present investigation, but it is left for future studies. Another limitation is that only 
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exact resonances were studied. However, for the amplitude to become large, it is 
sufficient that the eigenvalues are close. This near resonance was found to be a fairly 
common phenomenon. A further simplification is possible because the basic velocity 
is symmetric with respect to the centre-line. The eigenfunctions to both eigenvalue 
problems are then either symmetric or anti-symmetric. Since U’ is anti-symmetric, 
x2 and g5 must have opposite symmetry properties for the integral in (5) to be non- 
zero. Furthermore, x1 = - x2  when E = 0. Therefore, the resonances are characterized 
by the symmetry properties of x1 (or x2). For the purpose of exposition, nine resonances 
have been investigated. It is believed that an infinite number of resonances exists, 
however. 

3. Numerical results 
The two eigenvalue problems (6) and (7) were solved numerically by using the same 

technique as in Gustavsson & Hultgren (1980). The numerical integration of the 
differential equations started at  the centre-line of the channel with initial conditions 
corresponding to the linearly independent solutions that had the desired symmetry 
properties. The eigenvalues obtained for the Orr-Sommerfeld equation were compared 
with the ones given by Orszag (1971), and agreement to within the required decimal 
places was demonstrated. 

In order to gain insight about the relationship between the eigenvalues c1 and c2, 
their location in the complex c plane was determined for various aR values with k 
equal to unity. The results are shown in figure 1 for symmetric x1 and in figure 2 for 
anti-symmetric xl. The eigenvalues are labelled such that a capital letter indicates 
an Orr-Sommerfeld eigenvalue and ‘s ’ or ‘a ’ means symmetric or anti-symmetric 
eigenmode, respectively. The modes are numbered according to increasing damping 
rate at  aR = 100. It is seen that, for the higher modes, c1 and c2 form pairs that move 
upwards along the line on which cR = 8 as aR is increased. As aR becomes sufficiently 
large, the eigenvalues approach either the origin or cR = 1.  cR is the phase velocity. 
This is in agreement with the results obtained by Grosch & Salwen (1968). For the 
Orr-Sommerfeld eigenvalues, the cR = + line and the two branches are generally 
denoted S, A and P, respectively (Mack 1976). It was found in two cases that, 
depending on the value of k, the eigenvalue c2 could approach either branch as aR 
was increased. This indicates the presence of a degeneracy in the dispersion relation- 
ship. For the vertical vorticity eigenvalues, the behaviour is simpler in that con- 
secutive eigenvalues along the S branch alternate among the A and P branches 
as aR increases. 

The search for resonances started with the mode pair (s2, A l) ,  but it was found that 
these eigenvalues always differ as aR is varied. The next pair of eigenvalues considered 
was (s3, A 2).  As aR increases, both eigenvalues belong to the P branch and were 
found to be close to each other. Curves in the k-aR plane on which the real and the 
imaginary parts, respectively, of the two eigenvalues are equal are shown in figure 3. 
The two curves are seen to cross a t  k = 5-7 and aR = 147. More accurate calculations 
give the following values for the resonance: 

k = 5-7942 and aR = 147.07 with c = 0.69256 - 0.57474i. 

A second resonance for the same mode pair was found at  

k = 1.0153 and aR = 345.77 with c = 0.80942 - 0.19269.3. 
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FIGURE 1, Location in the complex c plane of c1 (v ) and c2 ( + ) for symmetric x1 and anti- 
symmetric #. k = 1. (a)  aR = 100, ( b )  aR = 200, (c) UR = 500, (d) UR = 1000. 
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FIGURE 2. Location in the complex c plane of c1 (v)  and c2 ( + )  for anti-symmetric 
x1 and symmetric q5. k = 1. ( a )  uR = 100, ( b )  uR = 200, (c) UR = 500, ( d )  uR = 1000. 
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FIGURE 3. The dashed and solid lines represent curves on which the real and the imaginary 
parts, respectively, are equal for the eigenvalues corresponding to  the modes s3 and A2. 

Resonance was also found to occur for the mode pairs (s4, A 3) and (s8, A 7). Reson- 
ance was not found for the mode pairs (s5, A a), (s6, A 5 )  and (s7, A 6) even though 
the eigenvalues can be very close. For example, for k = 1.5 and aR = 250, the absolute 
value of the difference between the eigenvalues s5 and A 4 is 4.5 x 10-3. This may be 
considered as effectively a resonance. In addition, it was observed that the Orr- 
Sommerfeld eigenvalues A 4 and A 5 seem to coincide for k N_ 2-8 and aR N 620. If 
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Type 
S 
A 
A 
S 
S 
S 
A 
A 
S 

Mode lac,l-' 
pair Rc, k aR C ( R  = 1000) 

(s3, A2) 25.04 5.7942 145.07 0.69256-0.57474i 11.99 
(a3, S3) 78.56 1.4777 116.09 0.67182-0.75854i 11.36 
(a47 S4) 95.25 2-3432 223.19 0.67 148-0-70405i 6.36 
ls4, A31 151-75 0,8166 123.92 0,67090-0.96107 i 8.40 

( ~ 3 ,  A21 340.55 1.0153 345.76 0+30942-0.19268 i 15.01 
(as, 58)  591.89 1.8663 1104.65 0.67195-0.53934i 1.68 
(a7,57) 895.14 1.0525 942.14 0.67277-0'47551 i 2.23 
( ~ 8 ,  A7) 1417.11 0.6312 894.48 0.67137-0.58806i not active 

(s8, A7) 205-32 6.8111 1398.48 0.68073-0.37506i 1.91 

TABLE 2. Characteristics of resonances in plane Poiseuille flow. 
Type indicates the symmetry of x1 ('A', anti-symmetric ; ' S ', symmetric). 
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the eigenmodes corresponding to these eigenvalues are not orthogonal, this degeneracy 
leads to a resonant growth of the vertical velocity alone. 

For anti-symmetric xl, the investigation showed that the mode pairs (a3, S3), 
(a4, S4), (a7, 57) and (as, SS) can exhibit resonance, whereas the mode pairs (as, S5)  
and (as, S6) do not. It was also found that the Orr-Sommerfeld modes S5 and S6 
seem to coincide somewhere in the region 1 < k < 2 and 550 < aR < 600. 

Table 2 summarizes the characteristics of the resonances found. I n  order to illus- 
trate the achievable amplitude amplifications, the quantity lacI 1-1 has also been 
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FIGURE 4. Amplitude distribution of the eigenfunction for the six first resonances in table 2. 
(a )  (83, A2), ( 6 )  (a3, S3), (c )  (a4, S4), ( d )  (s4, A3), (e) (s8, A7), (f) (63, A2).  

Y 

tabulated for R = 1000. Finally, the amplitude distribution of x1 for six of the reson- 
ances are shown in figure 4. 

4. Discussion 
The resonances occur only a t  discrete points in the E-aR plane. This is in contrast 

to the case for plane Couette flow (Gustavsson & Hultgren 1980) where the resonances 
found so far occur along curves in the k-aR plane. Because a < E ,  it  follows that for 
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each resonance there is a critical Reynolds number under which it cannot occur. This 
critical Reynolds number is defined by 

The subscript denotes the value of the parameter a t  resonance. Table 2 also gives the 
critical Reynolds numbers for the resonances. There is no upper limit on the Reynolds 
number. It can be increased as long as the product aR is kept constant. Thus, as R 
increases, a decreases and the spanwise wave number, ,B, tends to E,. Thus, a t  high 
Reynolds numbers, structures elongated in the streamwise direction and with distinct 
spanwise scales are likely formed. Also, the growth becomes linear for all times as 
R-tCO. 

The resonances that have been presented are exact, i.e. the eigenvalues c1 and c2 
can be made to coincide to any required degree of accuracy. However, for a resonant- 
like behaviour to occur, it  is sufficient that the eigenvalues are close. This indicates 
that even those mode pairs that do not exhibit resonance may produce large amplitudes 
a t  some wavenumber combination(s). 

A simple calculation shows that, for given fluid and geometry, the dimensional 
resonance frequency is independent of the flow speed. From table 2, it is observed that 
the ratio ac,/lac,I is of order unity for most of the resonances. Only parts of a full 
oscillation will therefore be completed before the amplitude maximum is reached. 
This fact may complicate efforts to detect the resonances experimentally. 

The critical Reynolds numbers for the found resonances are all small compared to 
the lowest Reynolds number ( N 1000) for which transition has been reported to occur 
for plane Poiseuille flow. At this Reynolds number, eight resonances are active. This 
suggests that nonlinear interactions between different resonances and/or secondary 
instabilities triggered by the resonances could play a role in the transition process. 

The author would like to thank Professor L. S. Hultgren for discussions on this 
topic and for his constructive criticism of the manuscript, and Mr Glenn Ierly for 
assistance in the early part of the numerical work. The research was supported by the 
Air Force Office of Scientific Research under Grant no. AFOSR-79-0006. 
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